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The turbulence structure of a highly curved mixing layer 
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As part of a general investigation of complex turbulent flows, extensive one- 
point measurements have been made of the turbulence structure of the mixing 
layer bounding a normally impinging plane jet with an irrotational core. The ratio 
of shear-layer thickness to streamline radius of curvature reaches a maximum 
of about 0.2, the sense of the curvature being stabilizing. Downstream of the 
impingement region the shear layer returns asymptotically to being a classical 
plane mixing layer. The most striking feature of the results is that the return is 
not monotonic: after decreasing in the region of stabilizing curvature, the 
Reynolds stresses, triple products, energy dissipation rate and other turbulence 
quantities overshoot the plane-layer values before finally decreasing. Some con- 
clusions are drawn about the nature of the turbulent transport of Reynolds stress, 
and about the representation of this and other processes in calculation methods 
for complex turbulent flows. An incidental result of the work is a comprehensive 
set of measurements in a plane mixing layer. 

1. Introduction 
Because turbulent stresses are so smalI compared with typical dynamic pres- 

sures, turbulent stress gradients significantly affect the development of a flow 
only if the stress changes by a large fraction in a small distance. The Reynolds- 
stress transport equations generally preclude rapid changes of stress along mean 
streamlines, so that any large gradients are usually in the direction normal to 
the streamlines. The stress whose gradient normal to a given line affects the flow 
along that line is a shear stress (referred to the given line and its normal as axes). 
There follows the well-known conclusion, valid also for laminar flow a t  high Rey- 
nolds number, that nearly all flows with significant stress gradients are fairly 
thin shear layers, whose thickness S is one or more orders of magnitude smaller 
than the streamwise distance 1 from the shear-layer origin. If the shear layer is to 
remain fairly thin, the basic rate of shear strain, aU/ay in the usual notation, must 
be much larger than any extra rate of strain in some other direction, e say, tend- 
ing to distort the layer. If this inequality is strong enough, i.e. if e(aU/ay)-I < 1 
or S/Z < 1, some terms in the equations of motion are small enough to be neglected 
and we arrive a t  Prandtl’s thin-shear-layer (‘boundary layer ’) approximation. 
The above reasoning has led some authors to suppose that the thin-shear-layer 

7 Present address : Central Electricity Generating Board, Marchwood Engineering 
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Name 
Effect of extra strain rate 

Inequality on turbulence structure 

Simple shear layer 10e (aU/ay)-l< 1 Negligible 
Thin shear layer e(aU/ay)-l e 1 Possibly significant 
Fairly thin shear layer 10e (aU/ay)-l 1 Probably large 

TABLE 1. Classification of shear layers by ratio of extra strain rate to mean shear: 
the symbol < denotes a factor of inequality not much less than 100. 

approximation, and even any calculation method which is successful in shear 
layers, can be applied with sufficient accuracy to nearly all flows with significant 
stress gradients. This assumption has been made, for instance, in a number of 
calculation methods for supersonic separated flows. However there are many 
shear layers which, although fairly thin, do not everywhere satisfy the require- 
ments of the thin-shear-layer approximation e(aU/ay)-l< 1. Also, evidence is 
rapidly accumulating that the effect of extra rates of strain on the turbulence 
structure of a shear layer is often surprisingly large, producing fractional changes 
in Reynolds stress of the order of 10 e(aU/ay)-l, which can be significant even if 
the thin-shear-layer approximation is obeyed. We need to distinguish different 
classes of shear Iayer according to typical values of e(aU/ay)-l, and a suggested 
classification in order of increasing size of extra strain rate is given in table 1: 
for a fuller discussion see Bradshaw (1973). Only a few slowly growing undis- 
torted flows will satisfy the ‘simple shear layer ’ requirement that the effects of 
any extra strain rates on turbulence structure shall be small. Note that a mere 
change in aU/ay is not regarded as an ‘extra’ rate of strain: it  does not affect the 
validity of the thin-shear-layer approximation and its effect on the turbulence 
structure is not unexpectedly large because it is the response to aU/ay that 
conditions our expectations. 

According to the above reasoning, nearly all flows with significant Reynolds- 
stress gradients should satisfy the ‘fairly thin shear layer’ requirement, very 
roughly e(aU/ay)-l < 0.1, except perhaps for localizedregions of strong distortion 
where pressure gradients overwhelm Reynolds-stress gradients. We must expect 
the turbulence structure of ‘fairly thin shear layers’ to be greatly affected by 
extra strain rates: in particular, localized regions of strong distortion may affect 
the turbulence structure for some distance downstream. 

This paper is one of a series on ‘complex’ turbulent flows (defined as shear 
layers with complicating influences like extra strain rates or interactions with 
other shear layers). The object of this research is to document the effect of these 
complicating influences so that some of the calculation methods which have 
proved satisfactory in simple shear layers can be extended with some confidence 
to  complex flows. An introduction was given by Bradshaw (1971 a )  and a progress 
report by Bradshaw (1975). Broadly speaking the work has shown that the effect 
on the turbulence structure of interaction with another parallel shear layer is 
small (Bradshaw, Dean & McEligot 1973; Morel, Torda & Bradshaw 1973; Dean 
1974a, 6 )  but has confirmed the findings of other authors that the effects of extra 
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strain rates on turbulence structure are very large (Bradshaw & Wong 1972; 
Bradshaw 1974; Meroney 1974; Brederode & Bradshaw 1974; Young 1974, un- 
published work at Imperial College). Progress with calculation methods was 
described by Bradshaw & Unsworth (1973, 1974): we have assumed that, in 
general, methods based on the Reynolds-stress transport equations will be 
needed in complex flows. 

The large effect of streamline curvature in the plane of the mean shear (e  = aV/ 
ax) has been rediscovered at intervals over the last 40 years a t  least and is now 
generally known: for a detailed review see Bradshaw (1973). Qualitatively a t  
least, the effect of streamline curvature is similar to that of buoyancy. A quantita- 
tive, though necessarily inexact, analogy has been drawn by Prandtl (see Toll- 
mien, Schlichting & Gortler 1961), Bradshaw (1969) and others: analogues of 
buoyancy parameters such as the Richardson number can be defined for curved 
flows and correlations of buoyancy effects in the atmospheric inner layer can be 
used with tolerable accuracy to predict the effects of mild and prolonged curva- 
ture in laboratory wall layers (e.g. Meroney 1974). More complicated cases such 
as the present one do not correspond to any realizable buoyant flow but the 
analogy is still useful in general terms. Both buoyancy and curvature produce the 
surprisingly large changes in Reynolds stress referred to above, an order of 
magnitude larger than expected from the eize of the explicit extra ‘generation’ 
terms in the Reynolds-stress transport equations; the size of the existing terms 
is changed by the extra strain rate or body force although they do not contain it 
explicitly. Eddy-viscosity and mixing-length formulae, which can be derived as 
local-equilibrium approximations to the transport equations, also underpredict 
the effects: an isotropic eddy-viscosity formula predicts that the change in Rey- 
nolds stress produced by an extra strain rate e is e( a U/ay)-l times the Reynolds 
shear stress - p G ,  whereas the actual factor is of the order of lOe(aU/ay/)-l. 
Clearly this apparent order-of-magnitude amplification of the extra terms in 
the transport equations cannot continue when e(aU/ay)-l is more than about 0.1, 
or mean-square intensities or energy dissipation rates would become negative. 
It is well known that highly stable buoyant flows revert to a non-turbulent state 
while highly unstable ones develop penetrative convection, which replaces true 
Reynolds stresses as the primary agent of momentum transfer in the vertical 
direction: similar gross changes must be expected in highly curved flows at  the 
upper limits of the ‘fairly thin shear layer ’ range in table 1. 

Highly curved flows close to a state of self-preservation have been studied by 
a number of authors, such as Giles, Hayes I% Sawyer (1966), Guitton (1970) and 
others in wall jets, Lumley and colleagues (see Wyngaard et al. 1968) in a mixing 
layer, and So & Mellor (1972, 1973) in a boundary layer. These experiments were 
reviewed by Bradshaw (1973) and only their directly relevant features will be 
mentioned here. The work of Wyngaard et al. is most relevant to the present 
mixing-layer study, being also the only one of the previous experiments to 
document one of the Reynolds-stress transport equations (the turbulent energy 
equation), but measurements were presented at one station only and the turbu- 
lent energy balance implies an improbable behaviour of the pressure ‘diffusion’ 
term. So & Mellor’s measurements showed a very rapid decrease in shear stress 
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FIGURE 1. Flow geometry and notation: all dimensions in cm. Fixed point P is near, 
but not at. centre of curvature: the latter varies with s. 

after the start of a region of stabilizing curvature, subsequent changes being 
slow, but they did not make enough measurements to extract an energy balance. 
We decided that one of the most useful flows for developing and testing calcula- 
tion methods would be the strongest possible perturbation of an initially self- 
preserving shear layer with a subsequent return to the same self-preserving state: 
both end states would be clearly defined and, with sufficiently detailed measure- 
ments, the effect of curvature history would be assessable. 

The configuration chosen for the present experiments is shown in figure 1; 
the maximum value of aVfax in the central region of the mixing layer is about 
- 0.2aU/ay (using x, y axes aligned with the local direction of the shear layer) so 
that the ‘fairly thin shear layer ’ limit is exceeded for a short streamwise distance 
only. The flow can be thought of as half a two-dimensional impinging jet, with 
a potential core; the ‘floor’ replaces the plane of symmetry. It was chosen as 
the only obvious case of a monotonic shear layer (i.e. one with mean shear of 
the same sign everywhere) which could be strongly perturbed by a short region 
of large curvature without the occurrence of a change of species (e.g. a change 
from a free jet to a wall jet or from a boundary layer to a separated shear layer). 
Two disadvantages of the present configuration are that only a stabilizing sense 
of streamline curvature can be obtained and that the mixing layer merges with the 
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boundary layer on the impingement surface before relaxation to the self-preserv- 
ing state is complete. The second disadvantageis minor, since we documented the 
self-preserving plane mixing layer in a companion experiment; the fist is out- 
weighed by the clarity with which (stabilizing) curvature effects are demonstrated 
by this flow, and by the practical importance of impinging jet flows. 

The measurements presented here were intended to document the transport 
equations for turbulent energy and shear stress as fully as possible, and include 
the triple products that effect turbulent transport of shear stress and turbulent 
energy. We have not measured any quantities involving pressure fluctuations, 
and our deductions of energy dissipation rates from frequency spectra may not be 
absolutely reliable although they should be adequate for comparative purposes. 
The unmeasured pressure-strain ‘redistribution ’ term in the shear-stress trans- 
port equation can be deduced as the difference in the measured terms if transport 
by pressure fluctuations can be neglected: this neglect seems to be justified 
a posteriori except near the high velocity edge of the curved shear layer. So far, 
only one-point measurements have been made, but the results emphasize the 
need for correlation measurements to provide information about eddy length 
scales. 

The most spectacular feature of the measurements is that the Reynolds 
stresses and other turbulent quantities, after decreasing as expected in the region 
of high stabilizing curvature, rise rapidly further downstream and overshoot the 
plane-layer values before finally decreasing. The measurements could not be 
extended far enoughdownstream to be absolutely sure that the final decrease to the 
plane-layer valueswasmonotonic, but any further oscillationswouldsurely be very 
slight. We have of course checked carefully that the overshoot in Reynolds stress 
was not caused by low frequency ‘flapping’ unsteadiness of the shear layer in the 
plane of the mean shear, rather than true turbulence: the simplest proofs that no 
such unsteadiness occurred are the presence of an overshoot in the spanwise- 
component intensity and the absence of very low frequency humps in the stream- 
wise-component spectra. It appears that the main reason for the overshoot is 
that the large eddies, which effect turbulent transport from the high intensity 
region towards the edge of the shear layer, re-establish themselves rather more 
slowly after the curvature ends than does the rest of the energy-containing 
turbulence. It may also be that, like turbulence in the later stages of transition, 
the re-established turbulence is more ‘efficient’ than ordinary turbulence, in the 
sense that it can carry more Reynolds stress for ;1, given dissipation rate. However 
one would expect ‘efficient ’ shear-layer turbulence to have a higher ratio of shear 
stress to turbulent intensity than usual, and this is not observed. 

It will emerge during the discussion below that the present results undermine 
many of the principles used in current calculation methods for shear layers, such 
as the automatic use of the shear-layer thickness to provide a length scale, the 
rotational invariance of turbulence models based on second-order transport 
equations, and the gradient-diffusion hypothesis for turbulent transport. These 
principles are also undermined by physical arguments. Where possible we have 
suggested alternative principles and tested them against the present results. 
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2. Apparatus and techniques 
The rig shown in figure 1 was attached to the exit nozzle of a 3Ox5in. 

(7.6 x 12.7 cm) blower tunnel. The tunnel turbulence level, measured within a 
conventional working section, was less than 0.09% at the exit speed, U,,, or 
U,, of lOOft/s-1 (33 ms-1) used in the present experiments. Measurements in a 
plane mixing layer a t  the same tunnel speed, presented in detail by Castro 
(1973), showed that mean velocity profiles were accurately self-preserving for 
x > 20cm (Vre,x/v = 4 x 105, x/Oo N 700)t with a spreading parameter u of 
11.1, close to the value of 11.3 found by Liepmann & Laufer (1947) but very 
different from the value of 9 reported by Wygnanski & Fiedler (1970). Observa- 
tions of smoke a t  flow speeds of less than 1 m s-l showed the formation and mul- 
tiple pairing of spanwise ‘vortices’ in the unstable laminar flow but the pairing 
soon became helical and a wholly three-dimensional turbulence pattern ensued. 
We believe that the mixing layer a t  Uref = 33 m s-l, x > 20 cm was typical of 
high Reynolds number flows and did not have the strongly periodic and pre- 
sumably two-dimensional structure found a t  low Reynolds numbers by Winant 
& Browand (1974) and at moderate Reynolds numbers by Brown & Roshko 
(1974). There is some evidence (Chandrsuda & Bradshaw 1975) that the peri- 
odicity found by Brown & Roshko was exaggerated by the spanwise-integrating 
properties of their shadowgraph technique and the low aspect ratio of their test 
rig. The large-eddy motions in a mixing layer are undoubtedly very vigorous, 
but the extensive correlation measurements of Bradshaw, Ferriss & Johnson 
(1964) and Weber (1974) show that they are three-dimensional, while frequency 
spectra show broad peaks covering several octaves: the large-scale motion there- 
fore appears to be what is commonly called turbulence rather than a deterministic 
instability mode. The contrary conclusions in the literature appear to be based on 
low Reynolds number flows subject to the notoriously prolonged effects of tran- 
sition, accentuated in some cases by interaction with the columnar instability 
of circular jets. 

The ratio of the distance of the nozzle from the impingement surface, 4.47 cm, 
to the height of the nozzle opening, 12.7cm, was chosen such that the core of 
irrotational flow would not be completely entrained by the shear layer until well 
after the end of the curved region. Boundary-layer separation in the corner 
between the floor and the impingement surface (the ‘ backplate ’ in figure 1) was 
suppressed by allowing a volume flow of air equal to about 4Urei cm3 s-l per unit 
span to escape through a slot in the corner running the full width of the test rig. 
As a result, the potential-flow streamlines cannot be calculated from the rig 
geometry, and a reference streamline was therefore measured. An electrically 
heated wire was fixed along a spanwise line 4cm below the upper lip of the 
nozzle (y = - 4 cm in figure 1) and the path of the streamline starting a t  the 
wire was traced by traversing a thermocouple normal to the heated wake. This 
streamline remains in the potential flow until after the end of the curved region, 
and thereafter the backplate surface was used as the reference streamline. 
Two-dimensionality of the shear layer was checked by measuring the spanwise 

Here Oo is the initial momentum thickness. 
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distance between the thermal wakes of two heated wires set normal to the 
plane of the layer near the nozzle lip. The flow diverged slightly: a pessimiatic 
estimate of the apparent origin of lateral divergence was about 20m up- 
stream of the nozzle lip, corresponding to an error in momentum balance of 
no more than 3%) and divergence was therefore ignored in analysing the 
results. 

Standard hot-wire techniques were used, with DISA 55D01 constant-tempera- 
ture anemometers, 55P01 single-wire probes and 55A38 cross-wire probes. 
Probes were individually calibrated €or response to the magnitude and direction 
of the velocity. The yaw calibrations of the cross-wire probes were expressed as 
the apparent angle between the wire and the stream, deduced from the calibra- 
tion by assuming that the wire responded only to the velocity component normal 
to itself. In  effect, this fits the yaw calibration by a cosine curve with the same 
slope over the (small) range of calibration and uses the cosine as a plausible extra- 
polation (Bradshaw 1971 b, pp. 121 ff.). The geometrical angle of the wire is not re- 
quired. The problems of yaw calibration are discussed at greater length by Castro 
(1973), where it is concluded that the inevitable inaccuracies resulting from the 
inability of a 45Owire to distinguish between flow angles of 45 - 8 and 45 + 0 render 
the use of calibrations more elaborate than the ‘effective cosine’ law rather 
unrealistic. 

Except for the mean-flow and u-component spectrum measurements, all hot- 
wire signals were recorded on analog magnetic tapes (which are still available) and 
later transferred to digital tape by the data logger described by Brandt & 
Bradshaw (1972). The effective sampling rate was I0 kHz although not every 
point was used in the subsequent data analysis; the presence of power in the 
spectrum above the Nyquist frequency (half the sampling rate) introduces 
errors only in statistical quantities involving the time domain, and con- 
ventional mean products of any order are unaffected. The digital tapes were 
analysed on the Imperial College CDC 6400 computer, using adaptations of 
the program described by Brandt & Bradshaw: linearization of hot-wire 
signals was carried out in the computer, and the total computing time for 
evaluation of products and cross-products of up to fourth order from cross-wire 
signals a t  one point in the flow was about three times the analog sampling 
time of roughly 20 s. 

The digital processing techniques are straightforward, with the exception of 
the determination of the intermittency. The problems that appear in the latter 
-problems which are largely ignored by the ‘eyeball ’ process of finding inter- 
mittency from oscilloscope traces and suppressed by the heavily damped 
analog intermittency met,ers used by many workers in the past - are discussed 
in more detail by Castro (1973) and Bradshaw ’& Murlis (1974). In  the present 
work the flow was declared turbulent when a(uv)/at or a2(uv)/at2 exceeded a 
chosen threshold value, ignoring turbulent or irrotational intervals of less than 
two digital sampling intervals (0.2 ms, or a distance of 0.40 em in the maximum- 
intensity region, where U N 20 m s-l). Measurements in a boundary layer by 
Murlis (unpublished) show that the probability density of ‘burst’ length rises 
monotonically as the burst length decreases, a t  least down to the shortest 
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FIGURE 2. Centre-line geometry and shear-layer thickness. (a) Variation with polar co- 
ordinate angle 8;  for 60 < s < 100, S = 0.115s- 1.728; $ tan-l(dr/ds). ( b )  Variation of 
centre-line curvature K = 1/R with distance s round centre-line. (c) Rate of growth of shear- 
hyer thickness. 

measurable length: deductions about an ‘average burst length’ are therefore 
essentially unreliable and are not attempted here. 

The turbulent energy dissipation E on the centre-line was deduced from fits 
of the universal-equilibrium spectrum data of Grant, Stewart & Moilliet (1962) 
to u-component frequency spectra, measured by analog techniques and cor- 
rected for hot-wire length effects by the method of Wyngaard (1968): values of e 
off the centre-line were deduced by assuming that e is proportional to (F)j on 
a given profile, so that the dissipation length scale L, = (?)a/€ is constant across 
the width of the layer. L, appears to be very nearly independent of y in the mea- 
surements of Liepmann & Laufer (1974) in a plane mixing layer, and the above 
technique gave satisfactory results in our own plane layer. Frequency spectra off 
the centre-line of the curved layer did not contain any significant region with the 
-$-power law expected in an inertial subrange, and dissipation values extracted 
by making plausible allowances for the effects of intermittency and departures 
from Taylor’s hypothesis were implausible. These eccentricities did not seem to 
be attributable to curvature effects (no spectra were measured off the centre-line 
of the plane layer) nor to  an excessively low Reynolds number, the microscale 
Reynolds number on the centre-line of the plane layer being over 400 at s = 30 em. 
Evidently the existence of universal equilibrium in intermittently turbulent 
flow deserves further study. 

We have given some thought to the best way of presenting the data for the 
curved shear layer, and finally chose contour plots in s, n / S  axes, where s is the 
distance from the nozzle lip measured along an arbitrarily chosen curved centre- 
line (not a streamline), n is the distance measured normal to the centre-line and 
towards the centre of curvature, a t  any given s, and 6 is the thickness of the shear 
layer: for definitions and data see figures 1-3 and 3 3, and for a general review of 

18 = L M  73 
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co-ordinate systems and equations for curved flows see Bradshaw (1973). The 
graphs show these contours mapped on to rectangular x, n / S  axes. The deriva- 
tive following a mean streamline in real space is most simply obtained from the 
following expression, valid for small dS/ds: 

where all distances are measured on the rectangular graphs. Here U is the s 
component of the velocity, R is the (variable) radius of curvature of the 5 axis, 
which is negative by convention in this flow, and (d(n/S)/ds)@is the local inclination 
of the mean streamline to the 5 axis of the rectangular graph. dSfds and l/R are 
plotted against s in figure 2. Note that the axes and notation used in this paper 
differ in detail from those used by Castro (1973). 

3. Results 
Figure 1 shows the path of the shear layer, the edges being shown as wavy lines. 

For quantitative purposes the thickness S was chosen as the distance between 
the points where (P - p,)/$p Utef took values of 0-8 1 and 0.0625; here P is the total 
pressure measured with a Pitot tube andp, is the atmospheric pressure. In  a plane 
mixing layer with a static pressure negligibly different from atmospheric these 
definitions give the points U/U,,, = 0.9, 0.25, whose distance apart is 0 . 1 1 3 ~ .  
We deliberately chose points not too far from the centre of the shear layer so 
that the thickness 6, used as a length scale, should not be affected by minor 
eccentricities near the extreme edges of the profiles. The ‘centre-line’ is 0,396 
from the high velocity ‘edge’ and would coincide with the true centre-line, 
where P-pa -N 0.45 x in a plane mixing layer. These definitions are of 
course arbitrary and are used only in mapping the mixing layer into a rectangle 
for ease of presentation of results. The region of large curvature extends between 
about 15 and 50 em from the nozzle lip, and in this region the centre of curvature 
of the centre-line is near the point x = 12.6 cm, y = 25.1 em with respect to the 
nozzle lip. This point, P in figure 1, was chosen as the origin of radial traverses 
and of polar co-ordinates (r,  6 ) ,  and the shear-layer geometry is most easily 
recovered from the plots of r ,  4 = - tan-l (drlds),  5 and S against 6 in figure 2 (a)  : 
the total angle through which the centre-line has been deflected is 0 + 4. The 
centre-line curvature K = 1/R and the growth rate dS/ds are plotted against 5 in 
figures 2(b)  and ( c ) .  Beyond 8 = 90” polar co-ordinates are not used because the 
layer rapidly becomes straight, and the centre-line coincides with the line x = 35.4 
cm, 9-3 cm from the backplate. In  this region dS1d.s also becomes sensibly con- 
stant, but at a value some 9% higher than that in a plane layer: the Reynolds 
stresses are not exactly self-preserving, and eventual relaxation to the plane- 
layer state is expected. 

The polar co-ordinates of the ‘reference ’ streamline, which leaves the nozzle at  
y = -4cm and asymptotes to x N 40cm near the backplate before finally 
entering the shear layer, are given in figure 3 as plots of r ,  4 and s against 6, 
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product uvz. 

- _ _ -  
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together with the velocity along the streamline. The proper boundary conditions 
for a complete calculation of the flow are the magnitude and direction of the mean 
velocity on the reference streamline (figure 3a), the profiles of mean velocity 
(figure 3 b) and any other required quantities a t  the first measurement station, 
s = 12*6cm, together with the profiles at the last measurement station and a, 
suitable approximation to zero velocity a t  ‘infinity’ to complete the boundary 
conditions for an elliptic solution. 

The main results are plotted as contours in 8 ,  n/S co-ordinates in figures 4 (u)- 
(k). The results of the companion experiment in a plane self-preserving mixing 
layer are shown at the right-hand side of each figure (except figure 4b) as the 
notional asymptotes for large (and small) s, though in practice the flow a t  small 
s is affected by transition of the laminar nozzle boundary layer while a t  large s 
the mixing layer spreads to the backplate. Values in parentheses are the ex- 
tremum values in the plane layer. 
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The velocities shown in figures 4(a)-(k)  are resolved along and normal to the 
local centre-line (that is, the axes do not vary with n).  This choice, like that of the 
co-ordinate mapping, was made so that departures of the results from plane- 
mixing-layer behaviour could be attributed to changes in turbulence structure 
and not to geometryper se. The quantities plotted have all been measured directly 
except for q2u = u3 + uv2 + uw2 and q2v = u2v + v3 + vw2: in the latter cases the 
terms containing w were not measured in full but were assumed to bear the same 
ratio to the complete triple product as in the plane mixing layer, on the basis 
of a few check measurements. The streamlines in figure 4(b )  show the entrain- 
ment flow into the shear layer: the complete entrainment flow rate on the low 
velocity side up to s = lOOcm, which must be simulated roughly in elliptic 
calculations as a flow across the boundary at ‘infinity’, is about 37& cm3s-l 
per unit span. 

- - - -  - - - -  

Plots of derived quantities are introduced in the discussion below. 

4. The ‘fairly thin shear layer’ approximation 
As shown in the introduction, most flows with significant Reynolds-stress 

gradients are fairly thin shear layers, having dSldx and e(aU/ay)-l fairly small 
compared with unity. Qualitatively, this permits us to regard such flows as 
perturbations of classical shear layers such as the plane mixing layer, but the 
shear-layer concept is of quantitative use only if it permits simplifications of the 
equations of motion. The thin-shear-layer (or ‘boundary layer ’) approximation 
permits the negZect of some terms in the equations if dS/dx is very small compared 
with unity. If dS/dx and e(aU/ay)-l are fairly small we can expect that the terms 
which are neglected in the corresponding thin shear layer will be small enough 
to be approximated. This ‘fairly thin shear layer’ (FTSL) approximation is 
necessarily less rigorous than the classical thin-shear-layer approximation but it 
is the only possible bridge between thin shear layers and flows requiring the full 
Navier-Stokes equations. Clearly the concept applies to laminar or turbulent 
flows: in practice the main applications are to the treatment of turbulent flows 
with empirical Reynolds-stress models which are already approximate. The 
concept of approximating, rather than neglecting, terms is not new, even in the 
present context, but its application to shear layers has been fragmentary. This 
is a convenient opportunity to clarify the concept, and to test it  in a flow in 
which its use is virtually essential if the results are to be related to existing data 
for classical shear layers. 

We are entitled to  choose curvilinear co-ordinate axes so as to make the terms 
which we need to approximate as small as possible, and a prerequisite of the use 
of the FTSL approximation is to define the direction of the shear layer, which, 
as in a thin shear layer, will be chosen as the longitudinal axis. There is no need 
for a general definition since one object of the approximation is to relate the actual 
flow to a particular species of classical thin shear layer, whose properties can be 
invoked in the definition: however one’s confidence in the approximation as a 
concept would be increased if, in the present highly curved flow, the various 
plausible definitions of shea.r-layer direction were to coincide. 
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FIGURE 5. Comparison of definitions of shear-layer direction. x , PI; 0, Bz; 
a, pa; 0, p4. See $4 for notation. 

Some possible definitions are the following. 
(i) The direction of the ' centre-line ' defined at the beginning of Q 3 : this 

direction happens to coincide, within the accuracy of measurement, with the line 
on which the mean velocity is 0.67 of the reference velocity, as it does in a plane 
mixing layer. 

(ii) The direction Pz of the locus of points of maximum turbulent energy 
minus 0.017 rad (1'); ?is a maximum at y/x = 0.017 in a plane mixing layer. 

(iii) The direction p3 of the mean streamline at U/U,,, = 0.67 minus 0.01 rad 
(0.6'): V / U  is about 0-01 a t  y = 0 in a plane mixing layer. 

(iv) The direction p4 of the line having the same inclination to the expan- 
sive rate of strain at U/U,,, = 0.67 as does the y = 0 line in a plane mixing 
layer. 

The four definitions are plotted in figure 5, angles being measured (figure 1) 
with respect to a constant-r line: is of course the same as 4, plotted against 0 
in figure 2(a). Except at the first measuring point the different definitions are seen 
to coincide within the likely experimental accuracy (streamline angles mea- 
sured with a cross-wire probe generally agreed to within about lo with those 
deduced from resuItant velocity measurements using the continuity equation). 
In fact a small consistent difference between (i) and (ii) can be seen from the con- 
tour plots of turbulent intensity (in which the definition (i) is used for the s axis). 
We have not tried any more refined definitions based on the behaviour of the 
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FIGURE 6. Reynolds-stress gradients in the streamwise momentum equation. x , [(a(=)/ 
& ) U 3  x lo3 (cm-1) (maximum values); 0, [(aua/as) U;z] x 103 (cm-l) (centre-line values). 

- 

Reynolds-stress tensor because, as mentioned in the introduction, it appears to be 
the first law of complex flows that this behaviour will differ significantly from 
that in a shear layer unaffected by extra rates of strain. 

The most obvious use of the FTSL concept is in approximating the normal- 
stress gradient terms in the equations of motion referred to axes along and 
normal to the direction of the shear layer. These terms are neglected in the thin- 
shear-layer equations. Figure 6 shows the normal-stress gradient 82/88  in the 
s-component momentum equation compared with the shear-stressgradient aG/an: 
the most relevant comparison seems to be between the maximum $?/as, which 
occurs near the centre-line (where it would be zero in a plane mixing layer), and 
the maximum 8ZZ/8n. Now, using x, y co-ordinates along and normal to the local 
streamline, the streamwise momentum equation can be written in terms of the 
total pressure P as 

- a (P -+- 2) =- -4;iij 

ax P 2 

Therefore, although large negative values of aG/as occur, followed by large 
positive values as the flow recovers, the net effect on the total pressure on a given 
streamline is small enough for a crude approximation to 8p/as to suffice in a 
calculation method. It seems that this will be true in fairly thin shear layers in 
general: large and permanent changes in s o c c u r  only in flows whose mean velo- 
city is changed by a large and permanent amount by strong longitudinal pres- 
sure gradients, which dominate the normal-stress terms anyway. Note that in s, 
n co-ordinates a term 2G/R appears in the s-component momentum equation 
(see, for example, Bradshaw 1973), where R is the radius of curvature of the s 
axis: clearly this term can be retained in 'exact' form since zlv will always be 
evaluated explicitly in a calculation method. 
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These considerations suggest that discussion of the present results in the 
context of the 'fairly thin shear layer' approximation and with reference to 
measurementsin a plane mixing layer will be meaningful. The alternative would be 
to ignore any preferred directions and discuss the magnitude ,and direction of 
the principal stresses and strain rates (or the stresses and strain rates referred to 
arbitrary fixed axes, which would be even less helpful) : a brief discussion is given 
by Castro (1973). In  calculation methods, any explicit dependence of empirical 
input or approximation on preferred directions leads to model equations which 
are not rotationally invariant, and this gives pain to some people. This is not the 
place for a full discussion; readers with doubts can simply regard the s, n axes 
as a pragmatic extension of the axes used in the thin-shear-layer equations 
(themselves non-invariant), chosen to reveal and correlate differences between 
the curved flow and a plane mixing layer. 

As pointed out by Bradshaw (1973, §5.1), most of the parameters which are 
commonly used to describe curvature effects can be related to the rate-of-strain 
ratio e (aU/ay)-l = (aV/ax)  (aU/ay)-l = - (Ul r )  (aU/an)-l, where r is the local 
radius of curvature of the mean streamline. A parameter with a direct physical 
interpretation (Wyngaard 1967) is 

2 U/r 
R -  
f - a u/an + U/r' (3) 

which is (minus) the ratio of the v-component energy production term (due to 
streamline curvature) to the u-component energy production term. This verbal 
definition is the same as that of the flux Richardson number for buoyant flows. 
aU/& can be thought of as a typical angular velocity of the basic shear: a typical 
angular velocity of the energy-containing turbulence, say (iG)*/A, might be 
thought more realistic, but if the flow is in local energy equilibrium the two are 
directly related and equal to a first approximation. The present flow is not in 
local equilibrium but the behaviour of ZCv and L is so unusual that we have 
retained aU/an as a typical frequency, and use Rf as a curvature parameter. 

5. Effects of streamline curvature on the turbulence 
The turbulent energy equation and the shear-stress transport equation in s, n 

co-ordinates are, omitting the viscous diffusion term in the former equation and 
the complete viscous terms in the latter as is customary at high Reynolds 
numbers, 

- € 7  (4) 
where the four lines on the right represent respectively ths mean transport 
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(advection), production, turbulent transport (diffusion) and dissipation, the 
leading terms being underlined, and 

(l+;)g(+ [ u + ( l + -  ;) v- :n] ( -E)  

where the four lines on the right represent respectively the mean transport, 
generation, pressure-strain redistribution and turbulent transport. In the pre- 
sent case, n is taken positive towards the centre of curvature for conformity with 
the x, y axes used in plane mixing layers and R and its reciprocal K are negative. 
The parts of the generation terms in each equation that involve R therefore 
reduce the magnitudes of the total terms, so that a ‘stabilizing’ effect of curva- 
ture is expected though its magnitude cannot be judged from the behaviour of 
the generation terms alone. It is important to note that, at any rate in the 
present flow, the term (2- w:) U / R  in the shear-stress equation, representing 
the change in shear stress due to rotation of the axes, is rather small. The change 
in UV caused by rotating the axes through an angle 8 in the S, n plane is 

- 2 u ~  sin28 - (2 - 7) sin 8 cos 8 

and so only the second term produces first-order effects for small 8. (For large 
angles both terms become large but in real flows large changes in direction cannot 
usually be enforced quickly, so that this analysis is not relevant.) In  the present 
flow the rotation term is quite small until zlv has already fallen by a large amount. 
Also, rotation of the axes cannot be blamed in any indirect way for the behaviour 
of ZLV. The angle between the larger principal stress and the principal rate of strain 
is roughly constant round the s axis (Castro 1973). 

The effects of curvature on the shear stress and intensity are large: the maxi- 
mum value of the resultant intensity = u2 + w2 + w2 at a given station (figure 
7a) falls, nominally from the self-preserving value of 0.056u:e,, to 0*03U&.f a t  
s = 40 cm, and U./U:ef falls from 0.0085 to 0.0025. Large decreases in turbulent 
activity in the stably curved region were expected; it was not, however, expected 
that the shear stress and intensity would overshoot the plane-layer values by 
factors of about 1.3 before finally asymptoting to the latter. This appears to be 
a new aspect of the behaviour of turbulence: the only known phenomenon likely 
to be related to it is the overshoot in turbulence intensity in the later stages of 
transition. Very recently Young (unpublished work a t  Imperial College) has 
found a similar overshoot in a boundary layer downstream of a 30” convex (stable) 
bend with a radius of curvature about five times the boundary-layer thickness, 
so the phenomenon is likely to be a general response to a short region of large 
stabilizing strain rate rather than a peculiarity of the present configuration or of 
the mixing layer alone. 

- - -  
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FIGURE 7. Streamwise variation of turbulent energy and shear stress. (a) Maximum turbu- 
lent energy (circles) and shear stress (crosses). ( b )  Structure parameter &/q2 a, on centre- 
line. 
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The variations in the n direction (the ‘profiles’) of the turbulence quantities 
shown in figures 4(c)-(k)  are generally unremarkable. The dashed lines on the 
contour plots of the intensities and shear stress join the points where the plotted 
quantity is half the maximum value on the profile, so that the distance between 
the lines is a simple measure of the profile shape (a small distance means a peaky 
profile and vice versa). In  the case of the lines are very neaxly straight and 
parallel to the axis, but of the individual intensity profiles 2 becomes signifi- 
cantly more peaky, and 3less peaky, in the region of maximum streamline curva- 
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FIGURE 8. Intermittency factor, referred to plane layer at positions of same total pressure. 
x , s = 21.1 cm; 0 , 2 9 . 9 ;  c],34.4; a, 38.8 (from u-component flatness factor); +, s = 81-5; 
*, s = 81.5 (flatness factor). 

ture near s = 30 cm. The peakiness of the UV profile does not change significantly 
but the point of maximum shear stress moves out rather sharply towards the 
low velocity side of the layer near s = 30 cm. The positions of the maxima of the 
other profiles wander about slightly but consistently with respect to the arbitrary 
centre-line: the effect would be reduced by adopting definition (ii) of $ 4  for the 
centre-line, instead of definition (i). The shift of UV with respect to the other pro- 
files does seem to be significant (profiles were measured a t  s intervals of 4-4cm 
in this region so the deductions do not rely on one traverse only). Possibly the 
stress tensor in the slow-moving fluid near the low velocity side of the layer can 
rotate more rapidly, in terms of s, so that UV is less influenced by the axis-rotation 
effects discussed above (most other plausible explanations would predict a shift 
in a2 as well as UV). There is a small region of negative UV on the high velocity 
side of the layer near s = 30 cm caused by the change in sign of a Ulan in this 
region: in the free stream the moment of momentum is constant, so that U 
decreases with increasing distance from the centre of curvature, and in the region 
of maximum curvature this decrease begins well inside the shear layer. The 
shear stress UV seems to react more quickly than the turbulent intensity but the 
effect on zlv is more eye-catching because it can change sign whereas the intensity 
cannot. 

The triple products (figures 4h-k) change sign near the centre-line, all those 
shown being positive for positive n (approximately) and conversely. The contours 
of zero triple product (not necessarily shown in the figures) move towards the 
high velocity side of the layer after the region of strong curvature, and while the 
maximum values (n > 0)  continue to grow the minimum values (n < 0)  are 
greatest near s = 80 and then decline rather sharply. The movement of the 
zero contour is probably real but the sharp decline on the high velocity side is 
at least partly attributable to the presence of the wall. The wall (or the mirror- 
image flow which can be regarded as replacing it) sets up pressure fluctuations to 
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FIGURE 9. Terms in turbulent energy equation on centre-line: all quantities made dimen- 
sionless by US,,&. 0, advection; 0, production; x , diffusion; A, dissipation; - - -, out-of- 
balance term; ----- , plane-layer values. 

reduce the normal-component velocity to zero a t  the wall, and thus inhibits the 
turbulent motion, particularly that of the larger eddies. It is noticeable that & 
falls more sharply than 6, as would be expected from this explanation. This 
phenomenon, which has nothing to do with shear-layer curvature, deserves 
further study: it is a nice demonstration of the effect of a solid surface on turbu- 
lence in general and the pressure-fluctuation field in particular, and of the 
dominance of large eddies in triple-product transport. 

The intermittency factor y has not been fully explored, because the sample 
profiles shown in figure 8 showed that, when plotted against the total pressure 
(which appeared to be the best basis for comparisons), y is little affected by 
curvature. Indeed the main effect of curvature seems to be on the algorithm used 
to determine y from digitized fluctuation signals, which gave peculiar results near 
the high velocity edge in the region of maximum curvature. Examination of 
oscilloscope traces in this region showed that the irrotational motion was very 
strong: the intermittency at s = 38.8 cm, denoted by flagged triangles in figure 8, 
was obtained by manual measurement from chart recordings of the oscilloscope 
traces. All the indications are that these strong irrotaticnal fluctuations are 
due to wave motion in the highly stabilized region, similar to that shown in the 
shadowgraphs of Pao (1969) in a stably stratified flow, but as yet no two-point 
measurements have been made to investigate the propagation velocity in the 
irrotational region. 

If it  is accepted that the changes in profile shape are of secondary importance 
t o  the general streamwise trend of a reduction in turbulent activity in the highly 
curved region followed by overshoot and relaxation, the flow phenomena can be 
discussed mainly in terms of properties on the centre-line, where the second-order 
products are virtually at their maximum values. The maximum intensity and 
shear stress, and their ratio (2: 21v/q2) on the centre-line, are plotted against s 

19 F L M  73 
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lent transport; +, rotation - U(u2- wz)/R; ----, pressure-strain ‘ redistribution’, by 
difference; , plane-layer values. 
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in figures ?‘(a) and (b).  The terms in the turbulent energy equation and the .uV 
transport equation on the centre-line are plotted against s in figures 9 and 10, 
made dimensionless by U$&; note that the thin-shear-layer approximation 
has not been used. Turbulent transport by pressure fluctuations has been neglec- 
ted in both cases, and the main destruction term in the zlv transport equation, 
the pressure-strain ‘redistribution ’ term, has been obtained by difference. The 
neglect of pressure transport can be checked near the edges of the shear layer, 
where we expect that (transport by mean flow) = (transport by turbulence) and 
the difference between mean transport and the measured triple-product turbulent 
transport appears as an ‘out-of-balance’ term, and neglect is justified in the 
plane layer (figures I l a  and 12a). In  the curved layer (figures I l b - d )  pressure 
transport of turbulent energy near the high velocity edge is significant in the 
highly curved region, where the irrotational fluctuations (possible waves) are 
large, and also far downstream, where the shear layer has nearly reached the 
backplate. This is compatible with the suggested presence of wave motion in the 
one case and the influence of the solid surface on the large eddies in the other. 
It is more difficult to draw conclusions from the zlv balances of figure 12t 
because the ‘ out-of-balance ’ term is the pressure-strain redistribution, whose 
behaviour is not well understood: there may again be anomalies in the highly 
curved region (waves can transport momentum) but the balance at  s = 61 em 
appears normal. The out-of-balance terms in the central part of each of the pro- 
files of figure 11 are not attributable to the neglect of pressure transport (which 
must integrate to zero across the layer) but to inaccuracy in the measurement of 

t Figure 12 (but not figure 10) is referred to rectangular Cartesian co-ordinates so that 
the ‘rotation’ term is absorbed into mean transport. 
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FIGURE 11. Profiles of terms in turbulent energy equation: for notation see figure 9. (a )  Plane 
layer: + , normal-stress production; *, lateral triple-product diffusion; x , longitudinal 
diffusion. (b)  Curved layer, s = 34.4 cm, 8 = 50". (c) Curved layer, s = 38.8 om, 8 = 60". (d )  
Curved layer, s = 81.5 em. 

dissipation from frequency spectra (92). The error is no worse in the curved layer 
than in the plane layer, and could have been reduced to zero by arbitrarily 
changing the multiplying constant in the inertial-subrange law to which the 
spectra were fitted. The error is small enough to be. neglected in the present 
qualitative discussion, and the quantitative uncertainty is no greater than the 
discrepancies in, say, published measurements of UV in plane mixing layers. As in 
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FIGURES 12 (a, b ) .  For legend see page 294. 

the case of all the other measurements presented here, comparisons with our own 
plane-layer data provide a valid measure of curvature effects. The plane-layer 
values plotted a t  the right-hand sides of figures 9 and 10 have been corrected for 
the shift in apparent origin of the curved layer (no longer s = 0 )  and therefore 
vary slightly with s ;  the plane-layer values on the left are uncorrected. 

The stabilizing effect of streamline curvature (figures 9 and lo), first in the 
pressure-strain term (Crow 1968) and then in the dissipation (spectral energy 
transfer), and assisted by the curvature-dependent generation terms, causes a 



294 I .  P. Custro and P. Brudshaw 

FIGURE 12. Profiles of terms in transport equation: for notation see figure 10. Here, 
rectangular Cartesian co-ordinates are used. ( a )  Plane layer. ( b )  Curved layer, 8 = 29.9 em, 
0 = 40". ( c )  Curved layer, s = 38-8 em, 0 = 60". (d )  Curved layer, s = 61.1 em. 
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decrease in shear stress and intensity, which has a self-perpetuating effect be- 
cause of the resulting decrease in the generation terms. Mean transport down the 
longitudinal gradient partly compensates, post JIoc, and loss to  turbulent trans- 
port near the centre-line decreases. It does not seem profitable to discuss the 
transport equations for the triple products appearing in the turbulent transport 
terms because few of the terms in these equations have been measured in any 
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7 3  FIQDRE 14. Relative strength of large eddies, (q2v,,,-q2vm,,,)/(q )mx: ' max' 
implies maximum with respect to n at  given s. 
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experiment. Figure 13 shows the size of some of the terms in the turbulent 
energy equation and the UV transport equation which would be neglected accord- 
ing to the thin-shear-layer approximation. Turbulent transport of turbulent 
energy in the longitudinal direction is quite significant but, like longitudinal 
stress gradients, its net effect on the flow downstream of the curved region is 
relatively small. 

The fairly obvious statements in the last paragraph describe the flow behaviour 
up to about s = 37 cm (some 5 cm after the curvature (figure 2) starts to decrease). 
After this, the production of turbulent energy and the generation of .uV increase 
rather rapidly while the turbulent transport remains small, though increasing, 
and the dissipation continues to decrease slowly until s 2: 45cm. A rapid, and 
again self-perpetuating, increase in intensity and shear stress ensues, continuing 
until the triple-product turbulent transport terms becomes large and drain 
energy away from the centre-line. The increase may be triggered by the rapid 
increase in the rate of shear strain ai7lan - U / ( R  - n) as the curvature K decreases, 
leading to an increase in the main energy production term. The reason why the 
increase is prolonged is apparently that the triple products are slow to grow. 
The energy production starts to rise as soon as the curvature starts to fall, but 
the rise in diffusion (turbulent transport of turbulent energy) is delayed for a 
streamwise distance of very roughly 3-4 shear-layer thicknesses, which is a typi- 
cal large-eddy lifetime in this highly turbulent layer. A measure of the relative 
size of the triple-product term that appearsin the turbulent transport of turbulent 
energy is plotted in figure 14: its increase after the minimum (which occurs up- 
stream of the region of maximum curvature) is indeed rather slow although i t  
crosses the plane-layer value a t  about the same streamwise position as and ZZ 
do. Unfortunately this explanation of the overshoot ignores the effect of curva- 
ture on the pressure-strain term and the dissipation, which cannot be assessed: 
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FIGURE 15. Dissipation length parameters. 

the transport equation for the dissipation rate is even less accessible to measure- 
ment than that for the triple products. 

A reflexion of the behaviour of the dissipation is the variation of the dissipa- 
tion length scales L = (zcV)%/E and L, = (p)*/s along the centre-line (figure 15; 
the ratio L/L, is at ,  where a, is plotted in figure 7 b) .  The spectacular variation of 
dL/ds and dL,/ds would not be greatly changed by adjusting E to balance the 
turbulent energy equation on the centre-line. The relation between dissipation 
length scales and correlation length scales is not likely to be close, although L and 
L, are genuine length scales of the energy-containing motion in the sense that 
zcV, 2 and E (equal to the spectral energy transfer through the top of the energy- 
containing range of wavenumbers) are all properties of the energy-containing 
motion. L is plotted against the flux Richardson number R, ($4) in figure 16. As 
the curvature increases from zero, L at first increases linearly: the slope is 
probably not significant since the curvature is changing too rapidly for a 
' Monin-Oboukhov ' linear correction factor of the form 

L/Lo = ( 1 + PRf)-l, (6) 

where p is a constant (Bradshaw 1969), to be valid. At large R, the turbulence 
structure begins to saturate ( L  being necessarily positive, so that 3 - L/L, can- 
not exceed 1) but it is not certain that an asymptotic value of L has been reached 
by the time R, begins to decrease. The hysteresis in the curve demonstrates the 
inadequacy of any correction factor based on alocal R,. We have tried a correction 
factor with R, derived from a time-lagged value of the curvature (using a first- 
order ordinary differential equation with a time constant proportional to the 
shear-layer time scale) but, although the departure of L from the initial linear 
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FIGURE 16. Flux ‘ Richardson number’ R, and its effect on L. Lo is plane-layer value. 
(a )  Streamwise variation of R,. ( b )  Dependence of L on R f :  x , curvature increasing; 0, cur- 
vature decreasing. 

trend is postponed, the cusp a t  large R, broadens into a loop and the discrepancy 
in the region of decreasing streamline curvature is even worse because the incipi- 
ent overshoot in L resembles the effects of a phase advance rather than a phase 
lag. A second-order ordinary differential equation could in principle reproduce 
the observed behaviour of L but such a mechanistic approach is hardly justified. 

The ratio of the extra rate of strain to the eddy time scale (QRf in the above 
notation) reaches a maximum of about 0.17 in the present flow (figure 16). 
This is a little large for the application of FTSL ideas, but, as seen above, they 
are helpful. For the quantitative application of rapid-distortion theory we 
require QR, $ 1 but, as pointed out by a referee, the concept of frozen turbulent 
vortex lines being distorted by the mean rate of strain is qualitatively useful even 
in the present case. The same referee has suggested that the rapid rise and over- 
shoot of ZLV can be explained in terms of rapid-distortion theory (and, indeed, has 
already been predicted; Townsend 1970) but we do not feel that, in this flow, 
rapid-distortion theory could ever provide a complete explanation of the pheno- 
menon and we have not attempted any quantitative comparisons. The modelling 
of the Reynolds-stress transport equations used recently by several authors 
(e.g. Launder, Reece & Rodi 1975) yields results close to those of rapid-distortion 
theory (e.g. Crow 1968) for large, suddenly applied rate of strain. Transport- 
equation calculation methods can in principle provide a satisfactory interpola- 
tion between the ‘viscous’ response of turbulence near local equilibrium after a 
prolonged rate of strain and the ‘elastic ’ response to rapid distortion. 
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FIGURE 17. Principal stress and principal rate of strain. x , maximum principal stress; 
0, 8 x principal rate of strain. Both normalized by plane-layer values. . 

6. Implications for calculation methods 
One practical application of turbulence research being the development of 

engineering calculation methods, the relevance of the present results to this 
application merits discussion. For the record, the maximum principal stress 
and the principal rate of strain are plotted against distance round the centre- 
line in figure 17. The graph does not itself demonstrate the invalidity of any local- 
equilibrium ‘eddy viscosity ’ relation between the stress and strain rate (except 
the crudest of such relations based on the mean-flow scales Urer and 6) but it does 
clearly show the lag in the response of Reynolds stress to a change in rate of 
strain -that is, the effect of ‘history ’ or mean transport terms on the Reynolds 
stress. We have just demonstrated the inability of a simple Monin-Oboukhov 
factor to represent the effect of steamline curvature on the representative length 
scale L :  in this case a contributory reason is the importance of turbulent 
transport of energy and other quantities in the direction normal to the stream- 
lines, which renders any local-equilibrium analysis invalid. Turbulent transport 
is more important in free shear layers than in wall flows, so that the present 
results may exaggerate the boundary-layer problem : however Young’s measure- 
ments in a highly curved boundary l a y s  indicate that turbulent transport will 
play an important part in some highly perturbed wall flows at  least. Figures 
18 (a)-(d) show the behaviour of the apparent eddy diffusivity and turbulent 
transport velocity for the triple products whose gradients are the main turbulent 
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transport terms in the turbulent energy equation and the shear-stress transport 
equation, respectively 

The eddy diffusivities necessarily have singularities because the triple product 
does not pass through zero a t  the same point as the stress gradient but this, 
though spectacular, is not important enough for us to reject the use of eddy 
diffusivities for correlating data. A more serious objection is that even outside the 
neighbourhood of the singularities the diffusivities obey no simple rules and the 
behaviour of v7 is quite different from that of vq. The differences between the 
three vq profiles, plotted against n/S, are reduced by scaling on (p)4 rather than 
Uref but the diffusivity for negative n at s = 34.4 remains unnaturally small. 
One expects the general level of vp to be roughly proportional to (?)L,S simply 
because the profiles of 2 plotted against n/S are roughly similar at different s 
positions, and it follows that changing the length scale from S to L, or the related 
length L, = (F)s/le, degrades the collapse. Therefore the common practice of 
scaling the eddy diffusivities on (?)* and L, is not acceptable here. However 
the FTSL concept allows one to use 6, rather than L or L,, as a length scale where 
appropriate, both in making the diffusivity dimensionless and in correlating it as 
a function of n/S if necessary: S is undoubtedly a relevant length scale if not a 
unique one. 

The behaviour of the transport velocities V, and V,  is somewhat easier to grasp, 
although V,  has a singularity near n/8 = - 0.5 because of the negative loop in ZCV 
at s = 34.4 (see figure 4 (9) : the same phenomenon is probably responsible, via 
a negative rate of turbulent energy production, for the anomalous behaviour of 
vp in the same region, but the most straightforward reasoning suggests that vq 
should be abnormally large in a region of low ?). The collapse of V, and V ,  is 
improved by scaling V ,  on (?)Lax and V ,  on (G)&,,: in this case no length scale is 
needed in the formula as a function of n/S. 

Clearly neither of the simple models of turbulent transport collapses the data 
accurately with any simple choice of scales but the transport-velocity model 
seems to be the better of the two in performance and is certainly the simpler to use. 

A major term in the individual Reynolds-stress transport equations is the mean 
product of the pressure and the fluctuating rate of strain in the plane of the 
Reynolds stress concerned. In  the present experiment the pressure-strain term 
p'(au/an + av/as) in the u v  transport equation has been obtained by difference. 
This is not the place for exploration of different schemes for modelling this term 
but one common assumption seems to be definitely contradicted: this is the 
' anisotropy assumption that the above pressure-strain term is proportional to  
uv divided by a time scale of the turbulence. Choosing the time scale as L/(G)* 
in conformity with FTSL ideas implies that the pressure-strain term should be 
directly proportional to the dissipation, and comparison of figures 9 and I0 
shows that it is not. An alternative choice for the time scale is L,/(?)*, implying 
pressure-strain x eG@; however Gp (figure 7 b )  returns to its plane-layer value 
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FIGURE 18. Diffusivity and bulk-convection velocity derived from triple-product transport 
terms. 0 ,  plane layer; 0, s = 34.4 cm; x , s = 81.6om. (a) Turbulent energy diffusivity 
v,/( U,S). ( b )  Turbulent energy bulk-convection velocity V,/U,. ( c )  Shear-stress diffusivity 
v,/U,S. (d )  Shear-stress bulk-convection velocity V,/U;. 

by s N 60 whereas the ratio of pressure-strain to dissipation in the later part of 
the curved flow is almost 1-5 times that in the plane layer. Use of 6 as a scale 
instead of L or L, would not greatly improve agreement in the later part of the 
flow, where L is no more than 1-1-1-2 times the plane-layer value. The alternative 
models for the pressure-strain term include, in addition to the ‘ anisotropy ’ 
term, a term proportional to the mean strain rate, but the choice of the factor 
multiplying the mean strain rate is not unique (Launder et at. 1975) so such models 
can be tested only individually and not as a class. 

A number of recent calculation methods include empirically modelled partial 
differential ‘transport’ equations for an eddy length scale or its equivalent, as 
well as for Reynolds stresses or their equivalents. Sometimes the exact transport 
equation for dissipation is modelled but the result can be converted into an 
equ.ation for L or L, by using the definitions of those quantities together with the 
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transport equations for UV or F. The simplest form of length-scale transport 
equation in a two-dimensional plane shear layer (retaining s, n co-ordinates for 
simplicity) is (Bradshaw & Unsworth 1973) 

where c1 and c4 are dimensionless ‘ constants’ (or functions) and V, is the trans- 
port velocity of L. Further refinements of the sort implied in the current 
literature are unlikely to affect the following discussion. 

The first term on the right-hand side is small in most existing model length- 
scale equations and we shall assume it to be negligible here. We shall also tenta- 
tively assume that L is independent of n, which is normally a good approximation 
for energy-containing length scales in free shear layers, and integrate (8) across 
the layer to remove the turbulent transport term. The result is 

dL/ds = c l  ITiZl4dn/4/ Udn, (9) 

which we may approximate by 

for shear layers whose shear-stress and velocity profiles have nearly constant 
shape. Clearly (10) implies that L increases monotonically with s. For the plane 
mixing layer, c‘ N- 0.23 according to the present results. An obvious extension of 
(8) to a shear layer with an extra strain rate e involves adding a term c5Lo to 
(8 ) .  With e = U / R  the corresponding addition to (10) is c; L/R. With the 
example of the ‘Monin-Oboukhov’ formulae in mind we may expect c5 to be 
much greater than el, so that the extra term in (8) may be significant even if c1 
is small. However it is easy to see that no constant cg can account for the behaviour 
of L in the curved mixing layer (figure 15), in particular the very large value of 
dL/ds near s = 50 em, where Zlv,,, is still well below the plane-layer value while 
the curvature-dependent term is still significant and tending to reduce L. We 
conclude that the addition, to a length-scale equation of the type (S), of terms 
depending on the local value of the extra strain rate is no more successful in 
reproducing the present result than equation (6), the ‘Monin-Oboukhov’ 
correction to the shear-stress equation. Other choices of length scale may be 
better behaved than L, but L and L, are the most commonly used in calculation 
methods. 

Now there are numerous weak points in the above argument, notably the 
assumption that L remains independent of n in the curved layer, but even with a 
generous allowance for uncertainty about the smallness of c1 and the n-wise 
variation of L it  is difficult to see how any simple extension of (8) with constant 
values of the c’s could reproduce a value of dL/ds three or four times that in the 
plane layer. One is forced towards the conclusion that a further level of allow- 
ance for history effects is necessary-for instance ‘ transport’ equations for one 
or more of the empirical constants, or the turbulent transport velocity, in (8). 
This takes one so far from measurable quantities that one would a t  present have 
little confidence in a calculation method employing such concepts, unless some 
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breakthrough in physical understanding can be made. Such a breakthrough 
could result only from a more detailed study of length scales in complex flows 
than we have been able to make in the present case. 

7. Conclusions 
The stably curved mixing layer of figure 1 is a flow which is perturbed from a 

self-preserving state by a short region of extra strain rate aV/ax, which reaches a 
maximum value of about - 0-2aUlay; the flow then relaxes back to the same self- 
preserving state. The thin-shear-layer approximation is not valid, but the ‘ fairly 
thin shear layer’ concept has been shown to be useful: even in this strongly per- 
turbed flow we have been able to define a shear-layer direction, and in axes along 
and normal to this direction the terms in the mean-motion equations which 
would be neglected in a thin shear layer are small enough to be approximated. This 
FTSL concept should be useful in nearly all flows with significant Reynolds- 
stress gradients. Although the explicit extra terms in the equation for the trans- 
port of momentum and Reynolds stress are fairly small, the effects of the extra 
strain rate on the turbulence structure are large. The Reynolds stresses and other 
turbulence quantities decrease in the region of maximum curvature, as expected, 
but then overshoot the self-preserving values before the final relaxation. This 
appears to be a new phenomenon in turbulent flow, and has also been observed in 
a highly curved boundary layer. Apparently, suppression of the triple products 
which effect turbulent transport permits an unusual increase in turbulent inten- 
sity in the central part of the layer where energy production is greatest: the main 
contribution to the triple products comes from the large eddies, which have the 
longest time scales and therefore take longest to recover from the effects of stabil- 
izing curvature. The results have been discussed in detail with special reference 
to engineering calculation methods. The simple local-equilibrium correction 
formulae which suffice to predict the effects of small continued curvature do not 
reproduce the observed results, and an allowance for rate-of-strain history, 
successfully used to extend the correction formulae to cases of small but rapidly 
varying curvature, make the agreement even worse. Even the more refined 
empirical ‘transport’ equations for the eddy length scale seem to be essentially 
incapable of reproducing the decrease in length scale observed in the region of 
maximum curvature. Finally, the two common models of turbulent transport, 
the gradient-diffusion model which defines an eddy diffusivity and the bulk- 
convection model which defines a transport velocity, are shown to give a poor 
correlation of the measured triple products: the simpler bulk-convection model 
seems to be the more satisfactory of the two. The initial contribution of the 
present work to the development of calculation methods is largely a negative, 
cautionary one. However the measurements should be useful in the formulation 
and testing of more refined turbulence models, representing as they do one of the 
most strongly perturbed shear layers likely to be found in practice. 
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